
Regression Models for Data Science in R
A companion book for the Coursera Regression Models
class

Brian Caffo

This book is for sale at http://leanpub.com/regmods

This version was published on 2015-08-05

This is a Leanpub book. Leanpub empowers authors and publishers with the Lean Publishing
process. Lean Publishing is the act of publishing an in-progress ebook using lightweight tools and
many iterations to get reader feedback, pivot until you have the right book and build traction once
you do.

This work is licensed under a Creative Commons Attribution-NonCommercial-ShareAlike 3.0
Unported License

Also By Brian Caffo
Statistical inference for data science

To Kerri, Penelope, Scarlett and Bowie



Contents

Preface . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1
About this book . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1
About the cover . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1

Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2
Before beginning . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2
Regression models . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2
Motivating examples . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3
Summary notes: questions for this book . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4
Exploratory analysis of Galton’s Data . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4
The math (not required) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7
Comparing children’s heights and their parent’s heights . . . . . . . . . . . . . . . . . . . 8
Regression through the origin . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10
Exercises . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12

Notation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14
Some basic definitions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14
Notation for data . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14
The empirical mean . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14
The emprical standard deviation and variance . . . . . . . . . . . . . . . . . . . . . . . . 15
Normalization . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15
The empirical covariance . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15
Some facts about correlation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16
Exercises . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16

Ordinary least squares . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17
General least squares for linear equations . . . . . . . . . . . . . . . . . . . . . . . . . . . 17
Revisiting Galton’s data . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19
Showing the OLS result . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21
Exercises . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21

Regression to the mean . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23
A historically famous idea, regression to the mean . . . . . . . . . . . . . . . . . . . . . . 23
Regression to the mean . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23

CONTENTS

Exercises . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26

Statistical linear regression models . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27
Basic regression model with additive Gaussian errors. . . . . . . . . . . . . . . . . . . . . 27
Interpreting regression coefficients, the intercept . . . . . . . . . . . . . . . . . . . . . . . 28
Interpreting regression coefficients, the slope . . . . . . . . . . . . . . . . . . . . . . . . . 28
Using regression for prediction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29
Example . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29
Exercises . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32

Residuals . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34
Residual variation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34
Properties of the residuals . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36
Example . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37
Estimating residual variation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 41
Summarizing variation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 42
R squared . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 44
Exercises . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 45

Regression inference . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 46
Reminder of the model . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 46
Review . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 46
Results for the regression parameters . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 47
Example diamond data set . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 47
Getting a confidence interval . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 49
Prediction of outcomes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 49
Summary notes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 51
Exercises . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 52

Multivariable regression analysis . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 53
The linear model . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 53
Estimation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 54
Example with two variables, simple linear regression . . . . . . . . . . . . . . . . . . . . . 55
The general case . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 55
Simulation demonstrations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 56
Interpretation of the coefficients . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 56
Fitted values, residuals and residual variation . . . . . . . . . . . . . . . . . . . . . . . . . 57
Summary notes on linear models . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 58
Exercises . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 58

Multivariable examples and tricks . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 59
Data set for discussion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 59
Simulation study . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 61
Back to this data set . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 62

CONTENTS

What if we include a completely unnecessary variable? . . . . . . . . . . . . . . . . . . . 62
Dummy variables are smart . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 63
More than two levels . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 64
Insect Sprays . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 64
Further analysis of the swiss dataset . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 69
Exercises . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 72

Adjustment . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 73
Experiment 1 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 73
Experiment 2 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 76
Experiment 3 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 77
Experiment 4 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 78
Experiment 5 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 79
Some final thoughts . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 80
Exercises . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 80

Residuals, variation, diagnostics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 81
Residuals . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 81
Influential, high leverage and outlying points . . . . . . . . . . . . . . . . . . . . . . . . . 82
Residuals, Leverage and Influence measures . . . . . . . . . . . . . . . . . . . . . . . . . . 84
Simulation examples . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 86
Example described by Stefanski . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 88
Back to the Swiss data . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 91
Exercises . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 91

Multiple variables and model selection . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 92
Multivariable regression . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 92
The Rumsfeldian triplet . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 93
General rules . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 93
R squared goes up as you put regressors in the model . . . . . . . . . . . . . . . . . . . . . 94
Simulation demonstrating variance inflation . . . . . . . . . . . . . . . . . . . . . . . . . 95
Summary of variance inflation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 96
Swiss data revisited . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 97
Impact of over- and under-fitting on residual variance estimation . . . . . . . . . . . . . . 98
Covariate model selection . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 99
How to do nested model testing in R . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 100
Exercises . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 100

Generalized Linear Models . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 101
Example, linear models . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 101
Example, logistic regression . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 102
Example, Poisson regression . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 102
How estimates are obtained . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 103
Odds and ends . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 104

CONTENTS

Exercises . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 104

Binary GLMs . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 105
Example Baltimore Ravens win/loss . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 105
Odds . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 106
Modeling the odds . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 108
Interpreting Logistic Regression . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 108
Visualizing fitting logistic regression curves . . . . . . . . . . . . . . . . . . . . . . . . . . 109
Ravens logistic regression . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 113
Some summarizing comments . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 115
Exercises . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 115

Count data . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 116
Poisson distribution . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 116
Poisson distribution . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 117
Linear regression . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 118
Poisson regression . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 120
Mean-variance relationship . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 121
Rates . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 123
Exercises . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 124

Bonus material . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 125
How to fit functions using linear models . . . . . . . . . . . . . . . . . . . . . . . . . . . 125
Notes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 126
Harmonics using linear models . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 127
Thanks! . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 129



Preface
About this book

This book is written as a companion book to the Regression Models¹ Coursera class as part of the
Data Science Specialization². However, if you do not take the class, the book mostly stands on its
own. A useful component of the book is a series of YouTube videos³ that comprise the Coursera
class.

The book is intended to be a low cost introduction to the important field of regression models. The
intended audience are students who are numerically and computationally literate, who would like
to put those skills to use in Data Science or Statistics. The book is offered for free as a series of
markdown documents on github and in more convenient forms (epub, mobi) on LeanPub.

This book is licensed under a Creative Commons Attribution-NonCommercial-ShareAlike 4.0
International License⁴, which requires author attribution for derivative works, non-commercial use
of derivative works and that changes are shared in the same way as the original work.

About the cover

The picture on the cover is a public domain image taken from Francis Galton’s paper on hereditary
stature. It represents an important leap in the development of regression and correlation as well as
regression to the mean.

¹https://www.coursera.org/course/regmods
²https://www.coursera.org/specialization/jhudatascience/1?utm_medium=courseDescripTop
³https://www.youtube.com/playlist?list=PLpl-gQkQivXjqHAJd2t-J_One_fYE55tC
⁴http://creativecommons.org/licenses/by-nc-sa/4.0/

Introduction
Before beginning

This book is designed as a companion to the Regression Models⁵ Coursera class as part of the Data
Science Specialization⁶, a ten course program offered by three faculty, Jeff Leek, Roger Peng and
Brian Caffo, at the Johns Hopkins University Department of Biostatistics.

The videos associated with this book can be watched in full here⁷, though the relevant links to
specific videos are placed at the appropriate locations throughout.

Before beginning, we assume that you have a working knowledge of the R programming language.
If not, there is a wonderful Coursera class by Roger Peng, that can be found here⁸. In addition,
students should know the basics of frequentist statistical inference. There is a Coursera class here⁹
and a LeanPub book here¹⁰.

The entirety of the book is onGitHub here¹¹. Please submit pull requests if you find errata! In addition
the course notes can be found also on GitHub here¹². While most code is in the book, all of the code
for every figure and analysis in the book is in the R markdown files files (.Rmd) for the respective
lectures.

Finally, we should mention swirl (statistics with interactive R programming). swirl is an intelligent
tutoring system developed by Nick Carchedi, with contributions by Sean Kross and Bill and Gina
Croft. It offers a way to learn R in R. Download swirl here¹³. There’s a swirl module for this course!¹⁴.
Try it out, it’s probably the most effective way to learn.

Regression models

Watch this video before beginning¹⁵

⁵https://www.coursera.org/course/regmods
⁶https://www.coursera.org/specialization/jhudatascience/1?utm_medium=courseDescripTop
⁷https://www.youtube.com/playlist?list=PLpl-gQkQivXjqHAJd2t-J_One_fYE55tC
⁸https://www.coursera.org/course/rprog
⁹https://www.coursera.org/course/statinference
¹⁰https://leanpub.com/LittleInferenceBook
¹¹https://github.com/bcaffo/regmodsbook
¹²https://github.com/bcaffo/courses/tree/master/07_RegressionModels
¹³http://swirlstats.com
¹⁴https://github.com/swirldev/swirl_courses#swirl-courses
¹⁵https://www.youtube.com/watch?v=58ZPhK32sU8&index=1&list=PLpl-gQkQivXjqHAJd2t-J_One_fYE55tC
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Regression models are the workhorse of data science. They are the most well described, practical
and theoretically understood models in statistics. A data scientist well versed in regression models
will be able to solve and incredible array of problems.

Perhaps the key insight for regression models is that they produce highly interpretable model fits.
This is unlike machine learning algorithms, which often sacrifice interpretability for improved
prediction performance or automation. These are, of course, valuable attributes in their own rights.
However, the benefit of simplicity, parsimony and intrepretability offered by regression models (and
their close generalizations) should make them a first tool of choice for any practical problem.

Motivating examples

Francis Galton’s height data

Francis Galton, the 19th century polymath, can be credited with discovering regression. In his
landmark paper Regression Toward Mediocrity in Hereditary Stature¹⁶ he compared the heights of
parents and their children. He was particularly interested in the idea that the children of tall parents
tended to be tall also, but a little shorter than their parents. Children of short parents tended to be
short, but not quite as short as their parents. He referred to this as “regression to mediocrity” (or
regression to the mean). In quantifying regression to the mean, he invented what we would call
regression.

It is perhaps surprising that Galton’s specific work on height is still relevant today. In fact this
European Journal of Human Genetics manuscript¹⁷ compares Galton’s prediction models versus
those using modern high throughput genomic technology (spoiler alert, Galton wins).

Some questions from Galton’s data come to mind. How would one fit a model that relates parent
and child heights? How would one predict a childs height based on their parents? How would we
quantify regression to the mean? In this class, we’ll answer all of these questions plus many more.

Simply Statistics versus Kobe Bryant

Simply Statistics¹⁸ is a blog by Jeff Leek, Roger Peng and Rafael Irizarry. It is one of the most widely
read statistics blogs, written by three of the top statisticians in academics. Rafa wrote a (somewhat
tongue in cheek) post regarding ball hogging¹⁹ among NBA basketball players. (By the way, your
author has played basketball with Rafael, who is quite good by the way, but certainly doesn’t pass
up shots; glass houses and whatnot.)

Here’s some key sentences:

¹⁶http://galton.org/essays/1880-1889/galton-1886-jaigi-regression-stature.pdf
¹⁷http://www.nature.com/ejhg/journal/v17/n8/full/ejhg20095a.html
¹⁸http://simplystatistics.org/
¹⁹http://simplystatistics.org/2013/01/28/data-supports-claim-that-if-kobe-stops-ball-hogging-the-lakers-will-win-more/
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• “Data supports the claim that if Kobe stops ball hogging the Lakers will win more”
• “Linear regression suggests that an increase of 1% in % of shots taken by Kobe results in a drop
of 1.16 points (+/- 0.22) in score differential.”

In this book we will cover how to create summary statements like this using regression model
building. Note the nice interpretability of the linear regression model. With this model Rafa
numerically relates the impact of more shots taken on score differential.

Summary notes: questions for this book

Regression models are incredibly handy statistical tools. One can use them to answer all sorts of
questions. Consider three of the most common tasks for regression models:

1. Prediction Eg: to use the parent’s heights to predict children’s heights.
2. Modeling Eg: to try to find a parsimonious, easily described mean relationship between

parental and child heights.
3. Covariation Eg: to investigate the variation in child heights that appears unrelated to parental

heights (residual variation) and to quantify what impact genotype information has beyond
parental height in explaining child height.

An important aspect, especially in questions 2 and 3 is assessingmodeling assumptions. For example,
it is important to figure out how/whether and what assumptions are needed to generalize findings
beyond the data in question. Presumably, if we find a relationship between parental and child
heights, we’d like to extend that knowledge beyond the data used to build the model. This requires
assumptions. In this book, we’ll cover the main assumptions necessary.

Exploratory analysis of Galton’s Data

Watch this video before beginning²⁰

Let’s look at the data first. This data was created by Francis Galton in 1885. Galton was a statistician
who invented the term and concepts of regression and correlation, founded the journal Biometrika,
and was the cousin of Charles Darwin.

You may need to run install.packages("UsingR") if the UsingR library is not installed. Let’s look
at the marginal (parents disregarding children and children disregarding parents) distributions first.
The parental distribution is all heterosexual couples. The parental average was corrected for gender
via multiplying female heights by 1.08. Remember, Galton didn’t have regression to help figure out
a betetr way to do this correction!

²⁰https://www.youtube.com/watch?v=1akVPR0LDsg&index=2&list=PLpl-gQkQivXjqHAJd2t-J_One_fYE55tC
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Loading and plotting Galton’s data.

library(UsingR); data(galton); library(reshape); long <- melt(galton)

g <- ggplot(long, aes(x = value, fill = variable))

g <- g + geom_histogram(colour = "black", binwidth=1)

g <- g + facet_grid(. ~ variable)

g

Plotting the galton dataset

Finding the middle via least squares

Consider only the children’s heights. How could one describe the “middle”? Consider one definition.
Let Yi be the height of child i for i = 1, . . . , n = 928, then define the middle as the value of µ that
minimizes

n∑
i=1

(Yi − µ)2.

This is physical center of mass of the histogram. You might have guessed that the answer µ = Ȳ .
This is called the least squares estimate for µ. It is the point that minimizes the sum of the squared
distances between the observed data and itself.

Note, if there was no variation in the data, every value of Yi was the same, then there would be no
error around the mean. Otherwise, our estimate has to balance the fact that our estimate of µ isn’t
going to predict every observation perfectly. Minimizing the average (or sum of the) squared errors
seems like a reasonable strategy, though of course there are others. We could minimize the average

Introduction 6

absolute deviation between the data µ (this leads to the median as the estimate instead of the mean).
However, minimizing the squared error has many nice properties, so we’ll stick with that for this
class.

Experiment

Let’s use rStudio’s manipulate to see what value of µ minimizes the sum of the squared deviations.
The code below allows you to create a slider to investigate estimates and their mean squared error.

Using manipulate to find the least squares estimate.

library(manipulate)

myHist <- function(mu){

mse <- mean((galton$child - mu)^2)

g <- ggplot(galton, aes(x = child)) + geom_histogram(fill = "salmon", colour\

= "black", binwidth=1)

g <- g + geom_vline(xintercept = mu, size = 3)

g <- g + ggtitle(paste("mu = ", mu, ", MSE = ", round(mse, 2), sep = ""))

g

}

manipulate(myHist(mu), mu = slider(62, 74, step = 0.5))

The least squares estimate is the empirical mean.

g <- ggplot(galton, aes(x = child)) + geom_histogram(fill = "salmon", colour = "\

black", binwidth=1)

g <- g + geom_vline(xintercept = mean(galton$child), size = 3)

g
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The best mean is the vertical line.

The math (not required)

Watch this video before beginning²¹

Why is the sample average the least squares estimate for µ? It’s surprisingly easy to show. Perhaps
more surprising is how generally these results can be extended.

²¹https://www.youtube.com/watch?v=FV8D_fI5SRk&list=PLpl-gQkQivXjqHAJd2t-J_One_fYE55tC&index=3
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n∑
i=1

(Yi − µ)2 =
n∑

i=1

(Yi − Ȳ + Ȳ − µ)2

=
n∑

i=1

(Yi − Ȳ )2 + 2
n∑

i=1

(Yi − Ȳ )(Ȳ − µ) +
n∑

i=1

(Ȳ − µ)2

=
n∑

i=1

(Yi − Ȳ )2 + 2(Ȳ − µ)
n∑

i=1

(Yi − Ȳ ) +
n∑

i=1

(Ȳ − µ)2

=
n∑

i=1

(Yi − Ȳ )2 + 2(Ȳ − µ)(
n∑

i=1

Yi − nȲ ) +
n∑

i=1

(Ȳ − µ)2

=
n∑

i=1

(Yi − Ȳ )2 +
n∑

i=1

(Ȳ − µ)2

≥
n∑

i=1

(Yi − Ȳ )2

Comparing children’s heights and their parent’s
heights

Watch this video before beginning²²

Looking at either the parents or children on their own isn’t interesting. We’re interested in how the
relate to each other. Let’s plot the parent and child heights.

ggplot(galton, aes(x = parent, y = child)) + geom_point()

²²https://www.youtube.com/watch?v=b34mXkyCH0I&list=PLpl-gQkQivXjqHAJd2t-J_One_fYE55tC&index=4
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Plot of parent and child heights.

The overplotting is clearly hiding some data. Here you can get the code ²³ to make the size and color
of the points be the frequency.

²³https://github.com/bcaffo/courses/blob/master/07_RegressionModels/01_01_introduction/index.Rmd
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Re plot of the data

Regression through the origin

A line requires two parameters to be specified, the intercept and the slope. Let’s first focus on the
slope. We want to find the slope of the line that best fits the data. However, we have to pick a good
intercept. Let’s subtract the mean from bot the parent and child heights so that their subsequent
means are 0. Now let’s find the line that goes through the origin (has intercept 0) by picking the best
slope.

Suppose thatXi are the parent heights with the mean subtracted. Consider picking the slope β that
minimizes

n∑
i=1

(Yi −Xiβ)
2.
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EachXiβ is the vertical height of a line through the origin at pointXi. Thus, Yi−Xiβ is the vertical
distance between the line at each observedXi point (parental height) and the Yi (child height).

Our goal is exactly to use the origin as a pivot point and pick the line that minimizes the sum of the
squared vertical distances of the points to the line. Use R studio’s manipulate function to experiment
Subtract the means so that the origin is the mean of the parent and children heights.

Code for plotting the data.

y <- galton$child - mean(galton$child)

x <- galton$parent - mean(galton$parent)

freqData <- as.data.frame(table(x, y))

names(freqData) <- c("child", "parent", "freq")

freqData$child <- as.numeric(as.character(freqData$child))

freqData$parent <- as.numeric(as.character(freqData$parent))

myPlot <- function(beta){

g <- ggplot(filter(freqData, freq > 0), aes(x = parent, y = child))

g <- g + scale_size(range = c(2, 20), guide = "none" )

g <- g + geom_point(colour="grey50", aes(size = freq+20, show_guide = FALSE))

g <- g + geom_point(aes(colour=freq, size = freq))

g <- g + scale_colour_gradient(low = "lightblue", high="white")

g <- g + geom_abline(intercept = 0, slope = beta, size = 3)

mse <- mean( (y - beta * x) ^2 )

g <- g + ggtitle(paste("beta = ", beta, "mse = ", round(mse, 3)))

g

}

manipulate(myPlot(beta), beta = slider(0.6, 1.2, step = 0.02))

The solution

In the next few lectures we’ll talk about why this is the solution. But, rather than leave you hanging,
here it is:

> lm(I(child - mean(child))~ I(parent - mean(parent)) - 1, data = galton)

Call:

lm(formula = I(child - mean(child)) ~ I(parent - mean(parent)) -

1, data = galton)

Coefficients:

I(parent - mean(parent))

0.646
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Let’s plot the best fitting line. In the subsequent chapter we will learn all about creating, interpreting
and performing inference on such mode fits. (Note that I shifted the origin back to the means of the
original data.) The results suggest that to every every 1 inch increase in the parents height, we
estimate a 0.646 inch increase in the child’s height.

Data with the best fitting line.

Exercises

1. Consider the dataset given by x=c(0.725,0.429,-0.372 ,0.863).What value of muminimizes
sum((x - mu)ˆ2)? Watch a video solution.²⁴

2. Reconsider the previous question. Suppose that weights were given, w = c(2, 2, 1, 1) so
that we wanted to minimize sum(w * (x - mu) ˆ 2) for mu. What value would we obtain?
Watch a video solution.²⁵

²⁴https://www.youtube.com/watch?v=Uhxm58rylec&list=PLpl-gQkQivXji7JK1OP1qS7zalwUBPrX0&index=1
²⁵https://www.youtube.com/watch?v=DS-Wl2dRxCA&list=PLpl-gQkQivXji7JK1OP1qS7zalwUBPrX0&index=2
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3. Take the Galton and obtain the regression through the origin slope estimatewhere the centered
parental height is the outcome and the child’s height is the predictor.Watch a video solution.²⁶

²⁶https://www.youtube.com/watch?v=IGVRkmrOrww&list=PLpl-gQkQivXji7JK1OP1qS7zalwUBPrX0&index=3 Notation
Watch this video before beginning²⁷

Some basic definitions

In this chapter, we’ll cover some basic definitions and notation used throughout the book. We will
try to minimize the amount of mathematics required so that we can focus on the concepts.

Notation for data

We write X1, X2, . . . , Xn to describe n data points. As an example, consider the data set {1, 2, 5}
then X1 = 1, X2 = 2, X3 = 5 and n = 3.

Of course, there’s nothing in particular about the varianbleX . We often use a different letter, such
as Y1, . . . , Yn to describe a data set. We will typically use Greek letters for things we don’t know.
Such as, µ being a population mean that we’d like to estimate.

The empirical mean

The empirical mean is a measure of center of our data. Under sampling assumptions, it estimates a
population mean of interest. Define the empirical mean as

X̄ =
1

n

n∑
i=1

Xi.

Notice if we subtract the mean from data points, we get data that has mean 0. That is, if we define

X̃i = Xi − X̄.

then the mean of the X̃i is 0. This process is called centering the random variables. Recall from the
previous lecture that the empirical mean is the least squares solution for minimizing

n∑
i=1

(Xi − µ)2

²⁷https://www.youtube.com/watch?v=T5UXxVKD0sA&index=5&list=PLpl-gQkQivXjqHAJd2t-J_One_fYE55tC
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The emprical standard deviation and variance

The variance and standard deviation are measures of how spread out are data is. Under sampling
assumptions, they estimate variability in the population. We define the empirical variance asL

S2 =
1

n− 1

n∑
i=1

(Xi − X̄)2 =
1

n− 1

(
n∑

i=1

X2
i − nX̄2

)

The empirical standard deviation is defined as S =
√
S2.

Notice that the standard deviation has the same units as the data. The data defined by Xi/s have
empirical standard deviation 1. This is called scaling the data.

Normalization

We can combine centering and scaling of data as follows to get normalized data. In particular, the
data defined by:

Zi =
Xi − X̄

s

have empirical mean zero and empirical standard deviation 1. The process of centering then scaling
the data is called normalizing the data. Normalized data are centered at 0 and have units equal to
standard deviations of the original data. Example, a value of 2 from normalized data means that
data point was two standard deviations larger than the mean.

Normalization is very useful for creating data that comparable across experiments by getting rid of
any shifting or scaling effects.

The empirical covariance

This class is largely considering how varaibles covary. This is estimated by the empirical covariance.
Consider now when we have pairs of data, (Xi, Yi). Their empirical covariance is defined as:

Cov(X,Y ) =
1

n− 1

n∑
i=1

(Xi − X̄)(Yi − Ȳ ) =
1

n− 1

(
n∑

i=1

XiYi − nX̄Ȳ

)

This measure is of limited utility, since its units are the product of the units of the two variables. A
more useful definition normalizes the two variables first.

The correlation is defined as:
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Cor(X, Y ) =
Cov(X,Y )

SxSy

whereSx andSy are the estimates of standard deviations for theX observations and Y observations,
respectively. The correlation is simply the covariance of the separately normalized X and Y data.
Because the the data have been normalized, the correlation is a unit free quantity and thus has more
of a hope of being interpretable across settings.

Some facts about correlation

First, the order of the arguments is irrelevant Cor(X,Y ) = Cor(Y,X) Secondly, it has to be
between -1 and 1, −1 ≤ Cor(X, Y ) ≤ 1. Thirdly, the correlation is exactly -1 or 1 only when
the observations fall perfectly on a negatively or positively sloped, line, respectively. Fourthly,
Cor(X, Y )measures the strength of the linear relationship between the two variables, with stronger
relationships as Cor(X, Y ) heads towards -1 or 1. Finally, Cor(X, Y ) = 0 implies no linear
relationship.

Exercises

1. Take the Galton dataset and find the mean, standard deviation and correlation between the
parental and child heights. Watch a video solution.²⁸

2. Center the parent and child variables and verify that the centered variable means are 0.Watch
a video solution.²⁹

3. Rescale the parent and child variables and verify that the scaled variable standard deviations
are 1. Watch a video solution.³⁰

4. Normalize the parental and child heights. Verify that the normalized variables have mean 0
and standard deviation 1 and take the correlation between them. Watch a video solution.³¹

²⁸https://www.youtube.com/watch?v=6zq-excgkHg&list=PLpl-gQkQivXji7JK1OP1qS7zalwUBPrX0&index=4
²⁹https://www.youtube.com/watch?v=OT9tn_jtzus&list=PLpl-gQkQivXji7JK1OP1qS7zalwUBPrX0&index=5
³⁰https://www.youtube.com/watch?v=y32m9mjEQsk&list=PLpl-gQkQivXji7JK1OP1qS7zalwUBPrX0&index=6
³¹https://www.youtube.com/watch?v=D7LmrbjenZk&list=PLpl-gQkQivXji7JK1OP1qS7zalwUBPrX0&index=7



Ordinary least squares
Watch this video before beginning³²

Ordinary least squares (OLS) is the workhorse of statistics. It gives a way of taking complicated
outcomes and explaining behavior (such as trends) using linearity. The simplest application of OLS
is fitting a line.

General least squares for linear equations

Consider again the parent and child height data from Galton.

³²https://www.youtube.com/watch?v=LapyH7MG3Q4&list=PLpl-gQkQivXjqHAJd2t-J_One_fYE55tC&index=6
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Plot of parent and child heights.

Let’s try fitting the best line. Let Yi be the ith child’s height andXi be the ith (average over the pair
of) parental heights. Consider finding the best line of the form

Child Height = β0 + Parent Heightβ1,

Let’s try using least squares by minimizing the following equation over β0 and β1:

n∑
i=1

{Yi − (β0 + β1Xi)}2.

Minimizing this equation will minimize the sum of the squared distances between the fitted line at
the pareNnts heights (β1Xi) and the observed child heights (Yi).

The result actually has a closed form. Specifically, the least squares of the line:

Y = β0 + β1X,
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through the data pairs (Xi, Yi) with Yi as the outcome obtains the line Y = β̂0 + β̂1X where:

β̂1 = Cor(Y,X)
Sd(Y )

Sd(X)
and β̂0 = Ȳ − β̂1X̄.

At this point, a couple of notes are in order. First, the slope, β̂1, has the units of Y /X . Secondly, the
intercept, β̂0, has the units of Y .

The line passes through the point (X̄, Ȳ ). If you center your Xs and Ys first, then the line will pass
through the origin. Moreover, the slope is the same one you would get if you centered the data,
(Xi − X̄, Yi − Ȳ ), and either fit a linear regression or regression through the origin.

To elaborate, regression through the origin, assuming that β0 = 0, yields the following solution to
the least squares criteria:

β̂1 =

∑n
i=1XiYi∑n
i=1X

2
i

,

This is exactly the correlation times the ratio in the standard deviations if the both the Xs and Ys
have been centered first. (Try it out using R to verify this!)

It is interesting to think about what happens when you reverse the role ofX and Y . Specifically, the
slope of the regression linewithX as the outcome andY as the predictor isCor(Y,X)Sd(X)/Sd(Y ).

If you normalized the data, {Xi−X̄
Sd(X)

, Yi−Ȳ
Sd(Y )

}, the slope is simply the correlation,Cor(Y,X), regardless
of which variable is treated as the outcome.

Revisiting Galton’s data

Watch this video before beginning³³

Let’s double check our calculations using R

Fitting Galton’s data using linear regression.

> y <- galton$child

> x <- galton$parent

> beta1 <- cor(y, x) * sd(y) / sd(x)

> beta0 <- mean(y) - beta1 * mean(x)

> rbind(c(beta0, beta1), coef(lm(y ~ x)))

(Intercept) x

[1,] 23.94 0.6463

[2,] 23.94 0.6463

³³https://www.youtube.com/watch?v=O7cDyrjWBBc&index=7&list=PLpl-gQkQivXjqHAJd2t-J_One_fYE55tC
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We can see that the result of lm is identical to hard coding the fit ourselves. Let’s Reversing the
outcome/predictor relationship.

> beta1 <- cor(y, x) * sd(x) / sd(y)

> beta0 <- mean(x) - beta1 * mean(y)

> rbind(c(beta0, beta1), coef(lm(x ~ y)))

(Intercept) y

[1,] 46.14 0.3256

[2,] 46.14 0.3256

Now let’s show that regression through the origin yields an equivalent slope if you center the data
first

> yc <- y - mean(y)

> xc <- x - mean(x)

> beta1 <- sum(yc * xc) / sum(xc ^ 2)

c(beta1, coef(lm(y ~ x))[2])

x

0.6463 0.6463

Now let’s show that normalizing variables results in the slope being the correlation.

> yn <- (y - mean(y))/sd(y)

> xn <- (x - mean(x))/sd(x)

> c(cor(y, x), cor(yn, xn), coef(lm(yn ~ xn))[2])

xn

0.4588 0.4588 0.4588

The image below plots the data again, the best fitting line and standard error bars for the fit. We’ll
work up to that point later. But, understanding that our fitted line is estimated with error is an
important concept. You can find the code for the plot here³⁴.

³⁴https://github.com/bcaffo/courses/blob/master/07_RegressionModels/01_03_ols/index.Rmd
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Image of the data, the fitted line and error bars.

Showing the OLS result

If you would like to see a proof of why the ordinary least squares result works out to be the way
that it is: watch this video³⁵.

Exercises

1. Install and load the package UsingR and load the father.son data with data(father.son).
Get the linear regression fit where the son’s height is the outcome and the father’s height is
the predictor. Give the intercept and the slope, plot the data and overlay the fitted regression
line. Watch a video solution.³⁶

³⁵https://www.youtube.com/watch?v=COVQX8WZVA8&index=8&list=PLpl-gQkQivXjqHAJd2t-J_One_fYE55tC
³⁶https://www.youtube.com/watch?v=HH78kFrT-5k&index=8&list=PLpl-gQkQivXji7JK1OP1qS7zalwUBPrX0
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2. Refer to problem 1. Center the father and son variables and refit the model omitting the
intercept. Verify that the slope estimate is the same as the linear regression fit from problem
1. Watch a video solution.³⁷

3. Refer to problem 1. Normalize the father and son data and see that the fitted slope is the
correlation. Watch a video solution.³⁸

4. Go back to the linear regression line from Problem 1. If a father’s height was 63 inches, what
would you predict the son’s height to be? Watch a video solution.³⁹

5. Consider a data set where the standard deviation of the outcome variable is double that of
the predictor. Also, the variables have a correlation of 0.3. If you fit a linear regression model,
what would be the estimate of the slope? Watch a video solution.⁴⁰

6. Consider the previous problem. The outcome variable has a mean of 1 and the predictor has
a mean of 0.5. What would be the intercept? Watch a video solution.⁴¹

7. True or false, if the predictor variable has mean 0, the estimated intercept from linear
regression will be the mean of the outcome? Watch a video solution.⁴²

8. Consider problem 5 again. What would be the estimated slope if the predictor and outcome
were reversed? Watch a video solution.⁴³

³⁷https://www.youtube.com/watch?v=Bf0euQ_-CuE&list=PLpl-gQkQivXji7JK1OP1qS7zalwUBPrX0&index=10
³⁸https://www.youtube.com/watch?v=Bf0euQ_-CuE&list=PLpl-gQkQivXji7JK1OP1qS7zalwUBPrX0&index=10
³⁹https://www.youtube.com/watch?v=46eu_SrKVNE&list=PLpl-gQkQivXji7JK1OP1qS7zalwUBPrX0&index=11
⁴⁰https://www.youtube.com/watch?v=rRADoy09tXg&list=PLpl-gQkQivXji7JK1OP1qS7zalwUBPrX0&index=12
⁴¹https://www.youtube.com/watch?v=TRxhUJB2zfg&list=PLpl-gQkQivXji7JK1OP1qS7zalwUBPrX0&index=13
⁴²https://www.youtube.com/watch?v=XBXL70A9eDw&list=PLpl-gQkQivXji7JK1OP1qS7zalwUBPrX0&index=14
⁴³https://www.youtube.com/watch?v=kzmyzpHcNtg&list=PLpl-gQkQivXji7JK1OP1qS7zalwUBPrX0&index=15

Regression to the mean
Watch this video before beginning⁴⁴

A historically famous idea, regression to the mean

Here is a fundamental question. Why is it that the children of tall parents tend to be tall, but not
as tall as their parents? Why do children of short parents tend to be short, but not as short as their
parents? Conversely, why do parents of very short children, tend to be short, but not a short as their
child? And the same with parents of very tall children?

We can try this with anything that is measured with error. Why do the best performing athletes this
year tend to do a little worse the following? Why do the best performers on hard exams always do
a little worse on the next hard exam?

These phenomena are all examples of so-called regression to the mean. Regression to the mean,
was invented by Francis Galton in the paper “Regression towards mediocrity in hereditary stature”
The Journal of the Anthropological Institute of Great Britain and Ireland , Vol. 15, (1886). The idea
served as a foundation for the discovery of linear regression.

Think of it this way, imagine if you simulated pairs of random normals. The largest first ones would
be the largest by chance, and the probability that there are smaller for the second simulation is
high. In other words P (Y < x|X = x) gets bigger as x heads to the very large values. Similarly
P (Y > x|X = x) gets bigger as x heads to very small values. Think of the regression line as
the intrinsic part and the regression to the mean as the result of noise. Unless Cor(Y,X) = 1 the
intrinsic part isn’t perfect and so we should think about how much regression to the mean should
occur. In other words, what should we multiply tall parent’s heights by to predict their children’s
height?

Regression to the mean

Let’s investigate this with Galton’s father and son data. (In this case ) Suppose that we normalizeX
(child’s height) and Y (father’s height) so that they both have mean 0 and variance 1. Then, recall,
our regression line passes through (0, 0) (the mean of the X and Y). If the slope of the regression
line is Cor(Y,X), regardless of which variable is the outcome (recall, both standard deviations are
1). Notice ifX is the outcome and you create a plot whereX is the horizontal axis, the slope of the
least squares line that you plot is 1/Cor(Y,X). Let’s plot the normalized father and son heights to
investigate.

⁴⁴https://www.youtube.com/watch?v=-I0_4JIeGws&list=PLpl-gQkQivXjqHAJd2t-J_One_fYE55tC&index=9
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Code for the plot.

library(UsingR)

data(father.son)

y <- (father.son$sheight - mean(father.son$sheight)) / sd(father.son$sheight)

x <- (father.son$fheight - mean(father.son$fheight)) / sd(father.son$fheight)

rho <- cor(x, y)

library(ggplot2)

g = ggplot(data.frame(x, y), aes(x = x, y = y))

g = g + geom_point(size = 5, alpha = .2, colour = "black")

g = g + geom_point(size = 4, alpha = .2, colour = "red")

g = g + geom_vline(xintercept = 0)

g = g + geom_hline(yintercept = 0)

g = g + geom_abline(position = "identity")

g = g + geom_abline(intercept = 0, slope = rho, size = 2)

g = g + geom_abline(intercept = 0, slope = 1 / rho, size = 2)

g = g + xlab("Father's height, normalized")

g = g + ylab("Son's height, normalized")

g
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Regression to the mean, illustrated.

Let’s investigate the plot and the regression fits. If you had to predict a son’s normalized height, it
would be Cor(Y,X) ∗Xi where Xi was the normalized father’s height. Conversely, if you had to
predict a father’s normalized height, it would be Cor(Y,X) ∗ Yi.

Multiplication by this correlation shrinks toward 0 (regression toward the mean). It is in this way
that Galton used regression to account for regression toward the mean. If the correlation is 1 there
is no regression to the mean, (if father’s height perfectly determines child’s height and vice versa).

Note since Galton’s original seminal paper, the idea of regression to the mean has been generalized
and expanded upon. However, the core remains. In paired measurements, if there’s randomness then
the extreme values of one element of the pair will be likely less extreme in the other element.

The number of applications of this phenomena is staggering. Some financial advisors recommend
putting your money in your worst performing fund because of regression to the mean. (If there’s
a lot of noise, those are the most likely to gain in value.) An example that I’ve run into is that
students performing the best on midterm exams often do much worse on the final. Athletes often
follow a phenomenal season with merely a good season. It’s a useful exercise to think whenever
paired observations are being evaluated whether real intrinsic properties are being discussed, or just
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regression to the mean.

Exercises

1. You have two noisy scales and a bunch of people that you’d like to weigh. You weigh each
person on both scales. The correlation was 0.75. If you normalized each set of weights, what
would you have to multiply the weight on one scale to get a good estimate of the weight on
the other scale? Watch a video solution.⁴⁵

2. Consider the previous problem. Someone’s weight was 2 standard deviations above the mean
of the group on the first scale. How many standard deviations above the mean would you
estimate them to be on the second? Watch a video solution.⁴⁶

3. You ask a collection of husbands and wives to guess how many jellybeans are in a jar. The
correlation is 0.2. The standard deviation for the husbands is 10 beans while the standard
deviation for wives is 8 beans. Assume that the data were centered so that 0 is the mean for
each. The centered guess for a husband was 30 beans (above the mean). What would be your
best estimate of the wife’s guess? Watch a video solution.⁴⁷

⁴⁵https://youtu.be/rZsnJ0EzVHo
⁴⁶http://youtu.be/2lHYXeRl0eg
⁴⁷https://youtu.be/htFH-4-vjS8

Statistical linear regression models
Watch this video before beginning⁴⁸

Up to this point, we’ve only considered estimation. Estimation is useful, but we also need to know
how to extend our estimates to a population. This is the process of statistical inference. Our approach
to statistical inference will be through a statistical model. At the bare minimum, we need a few
distributional assumptions on the errors. However, we’ll focus on full model assumptions under
Gaussianity.

Basic regression model with additive Gaussian errors.

Consider developing a probabilistic model for linear regression. Our starting point will assume a
systematic component via a line and then independent and identically distributed Gaussian errors.
We can write the model out as:

Yi = β0 + β1Xi + ϵi

Here, the ϵi are assumed to be independent and identically distributed asN(0, σ2). Under this model,

E[Yi | Xi = xi] = µi = β0 + β1xi

and

V ar(Yi | Xi = xi) = σ2.

This model implies that the Yi are independent and normally distributed with means β0 + β1xi and
variance σ2. We could write this more compactly as

Yi | Xi = xi ∼ N(β0 + β1xi, σ
2).

While this specification of the model is a perhaps better for advanced purposes, specifying the
model as linear with additive error terms is generally more useful. With that specification, we can
hypothesize and discuss the nature of the errors. In fact, we’ll even cover ways to estimate them to
investigate our model assumption.

Remember that our least squares estimates of β0 and β1 are:

⁴⁸https://www.youtube.com/watch?v=ewS1Kkzl8mw&list=PLpl-gQkQivXjqHAJd2t-J_One_fYE55tC&index=10
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β̂1 = Cor(Y,X)
Sd(Y )

Sd(X)
and β̂0 = Ȳ − β̂1X̄.

It is convenient that under our Gaussian additive error model that themaximum likelihood estimates
of β0 and β1 are the least squares estimates.

Interpreting regression coefficients, the intercept

Watch this video before beginning⁴⁹

Our model allows us to attach statistical interpretations to our parameters. Let’s start with the
intercept; β0 represents the expected value of the response when the predictor is 0. We can show
this as:

E[Y |X = 0] = β0 + β1 × 0 = β0.

Note, the intercept isn’t always of interest. For example, when X = 0 is impossible or far outside
of the range of data. Take as a specific instance, when X is blood pressure, no one is interested in
studying blood pressure’s impact on anything for values near 0.

There is a way to make your intercept more interpretable. Consider that:

Yi = β0 + β1Xi + ϵi = β0 + aβ1 + β1(Xi − a) + ϵi = β̃0 + β1(Xi − a) + ϵi.

Therefore, shifting yourX values by value a changes the intercept, but not the slope. Often a is set
to X̄ , so that the intercept is interpreted as the expected response at the averageX value.

Interpreting regression coefficients, the slope

Now that we understand how to interpret the intercept, let’s try interpreting the slope. Our slope,
β1, is the expected change in response for a 1 unit change in the predictor. We can show that as
follows:

E[Y | X = x+ 1]− E[Y | X = x] = β0 + β1(x+ 1)− (β0 + β1x) = β1

Notice that the interpretation of β1 is tied to the units of the X variable. Let’s consider the impact of
changing the units.

Yi = β0 + β1Xi + ϵi = β0 +
β1

a
(Xia) + ϵi = β0 + β̃1(Xia) + ϵi

⁴⁹https://www.youtube.com/watch?v=71dDzKPYEdU&list=PLpl-gQkQivXjqHAJd2t-J_One_fYE55tC&index=11
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Therefore, multiplication ofX by a factor a results in dividing the coefficient by a factor of a.

As an example, suppose thatX is height in meters (m) and Y is weight in kilograms (kg). Then β1 is
kg/m. ConvertingX to centimeters implies multiplyingX by 100 cm/m. To get β1 in the right units
if we had fit the model in meters, we have to divide by 100 cm/m. Or, we can write out the notation
as:

Xm× 100cm

m
= (100X)cm and β1

kg

m
× 1m

100cm
=

(
β1

100

)
kg

cm

Using regression for prediction

Watch this video before beginning⁵⁰

Regression is quite useful for prediction. If we would like to guess the outcome at a particular value
of the predictor, say X , the regression model guesses:

β̂0 + β̂1X

In other words, just find the Y value on the line with the corresponding X value. Regression,
especially linear regression, often doesn’t produce the best prediction algorithms. However, it
produces parsimonious and interpretable models along with the predictions. Also, as we’ll see later
we’ll be able to get easily described estimates of uncertainty associated with our predictions.

Example

Let’s analyze the diamond data set from the UsingR package. The data is diamond prices (in Singapore
dollars) and diamond weight in carats. Carats are a standard measure of diamond mass, 0.2 grams.
To get the data use library(UsingR); data(diamond)

First let’s plot the data. Here’s the code I used

⁵⁰https://www.youtube.com/watch?v=5isJA7T5_VE&list=PLpl-gQkQivXjqHAJd2t-J_One_fYE55tC&index=12
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library(UsingR)

data(diamond)

library(ggplot2)

g = ggplot(diamond, aes(x = carat, y = price))

g = g + xlab("Mass (carats)")

g = g + ylab("Price (SIN $)")

g = g + geom_point(size = 7, colour = "black", alpha=0.5)

g = g + geom_point(size = 5, colour = "blue", alpha=0.2)

g = g + geom_smooth(method = "lm", colour = "black")

g

and here’s the plot.

Plot of the diamond data with mass by carats

First, let’s fit the linear regression model. This is done with the lm function in R (lm stands for linear
model). The syntax is lm(Y ∼ X) where Y is the response and X is the predictor.
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> fit <- lm(price ~ carat, data = diamond)

> coef(fit)

(Intercept) carat

-259.6 3721.0

The function coef grabs the fitted coefficients and conveniently names them for you. Therefore,
we estimate an expected 3721.02 (SIN) dollar increase in price for every carat increase in mass of
diamond. The intercept -259.63 is the expected price of a 0 carat diamond.

We’re not interested in 0 carat diamonds (it’s hard to get a good price for them ;-). Let’s fit the model
with a more interpretable intercept by centering our X variable.

> fit2 <- lm(price ~ I(carat - mean(carat)), data = diamond)

coef(fit2)

(Intercept) I(carat - mean(carat))

500.1 3721.0

Thus the new intercept, 500.1, is the expected price for the average sized diamond of the data (0.2042
carats). Notice the estimated slope didn’t change at all.

Now let’s try changing the scale. This is useful since a one carat increase in a diamond is pretty big.
What about changing units to 1/10th of a carat? We can just do this by just dividing the coefficient
by 10, no need to refit the model.

Thus, we expect a 372.102 (SIN) dollar change in price for every 1/10th of a carat increase in mass
of diamond.

Let’s show via R that this is the same as rescaling our X variable and refitting. To go from 1 carat to
1/10 of a carat units, we need to multiply our data by 10.

> fit3 <- lm(price ~ I(carat * 10), data = diamond)

> coef(fit3)

(Intercept) I(carat * 10)

-259.6 372.1

Now, let’s predicting the price of a diamond. This should be as easy as just evaluating the fitted line
at the price we want to

> newx <- c(0.16, 0.27, 0.34)

> coef(fit)[1] + coef(fit)[2] * newx

[1] 335.7 745.1 1005.5

Therefore, we predict the price to be 335.7, 745.1 and 1005.5 for a 0.16, 0.26 and 0.34 carat diamonds.
Of course, our prediction models will get more elaborate and R has a generic function, predict, to
put our X values into the model for us. This is generally preferable and less The data has to go into
the model as a data frame with the same named X variables.
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> predict(fit, newdata = data.frame(carat = newx))

1 2 3

335.7 745.1 1005.5

Let’s visualize our prediction. In the following plot, the predicted values at the observed Xs are the
red points on the fitted line. The new X values are the at vertical lines, which are connected to the
predicted values via the connected horizontal lines.

Illustrating prediction with regression.

Exercises

1. Fit a linear regression model to the father.son dataset with the father as the predictor and
the son as the outcome. Give a p-value for the slope coefficient and perform the relevant
hypothesis test. Watch a video solution.⁵¹

2. Refer to question 1. Interpret both parameters. Recenter for the intercept if necessary. Watch
a video solution.⁵²

⁵¹https://www.youtube.com/watch?v=LxA2x2VvPWo&index=19&list=PLpl-gQkQivXji7JK1OP1qS7zalwUBPrX0
⁵²https://www.youtube.com/watch?v=YtXTK9ztE00&index=20&list=PLpl-gQkQivXji7JK1OP1qS7zalwUBPrX0
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3. Refer to question 1. Predict the son’s height if the father’s height is 80 inches. Would you
recommend this prediction? Why or why not? Watch a video solution.⁵³

4. Load the mtcars dataset. Fit a linear regression with miles per gallon as the outcome and
horsepower as the predictor. Interpret your coefficients, recenter for the intercept if necessary.
Watch a video solution.⁵⁴

5. Refer to question 4. Overlay the fit onto a scatterplot. Watch a video solution.⁵⁵
6. Refer to question 4. Test the hypothesis of no linear relationship between horsepower and

miles per gallon. Watch a video solution.⁵⁶
7. Refer to question 4. Predict the miles per gallon for a horsepower of 111. Watch a video

solution.⁵⁷

⁵³https://www.youtube.com/watch?v=kB95XqatMho&index=21&list=PLpl-gQkQivXji7JK1OP1qS7zalwUBPrX0
⁵⁴https://www.youtube.com/watch?v=4yc5ACmtYMw&index=22&list=PLpl-gQkQivXji7JK1OP1qS7zalwUBPrX0
⁵⁵https://www.youtube.com/watch?v=mhskQnUIVO4&index=23&list=PLpl-gQkQivXji7JK1OP1qS7zalwUBPrX0
⁵⁶https://www.youtube.com/watch?v=zjP82piLr1E&index=24&list=PLpl-gQkQivXji7JK1OP1qS7zalwUBPrX0
⁵⁷https://www.youtube.com/watch?v=UxSrHtY_klY&index=25&list=PLpl-gQkQivXji7JK1OP1qS7zalwUBPrX0

Residuals
Watch this video before beginning⁵⁸

Residual variation

Residuals represent variation left unexplained by our model. We emphasize the difference between
residuals and errors. The errors unobservable true errors from the known coefficients, while residuals
are the observable errors from the estimated coefficients. In a sense, the residuals are estimates of
the errors.

Consider again the diamond data set from UsingR. Recall that the data is diamond prices (Singapore
dollars) and diamond weight in carats (standard measure of diamond mass, 0.2 $g$). To get the data
use library(UsingR); data(diamond). Recall the data and our linear regression fit looked like the
following:

⁵⁸https://www.youtube.com/watch?v=5vu-rW_FI0E&list=PLpl-gQkQivXjqHAJd2t-J_One_fYE55tC&index=13
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Diamond data plotted along with best fitting regression line.

Recall our linear model was

Yi = β0 + β1Xi + ϵi

where we are assuming that ϵi ∼ N(0, σ2). Our observed outcome is Yi with associated predictor
value, Xi. Let’s label the predicted outcome for index i as Ŷi. Recall that we obtain our predictions
by plugging our observed Xi into the linear regression equation:

Ŷi = β̂0 + β̂1Xi

The residual is defined as the difference the between the observed and predicted outcome

ei = Yi − Ŷi.

The residuals are exactly the vertical distance between the observed data point and the associated
point on the regression line. Positive residuals have associated Y values above the fitted line and
negative residuals have values below.
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Picture of the residuals for the diamond data. Residuals are the signed length of the red lines.

Least squares minimizes the sum of the squared residuals,
∑n

i=1 e
2
i . Note that the ei are observable,

while the errors, ϵi are not. The residuals can be thought of as estimates of the errors.

Properties of the residuals

Let’s consider some properties of the residuals. First, under our model, their expected value is 0,
E[ei] = 0. If an intercept is included,

∑n
i=1 ei = 0. Note this tells us that the residuals are not

independent. If we know n − 1 of them, we know the nth. In fact, we will only have n − p free
residuals, where p is the number of coefficients in our regressionmodel, so p = 2 for linear regression
with an intercept and slope. If a regressor variable,Xi, is included in the model then

∑n
i=1 eiXi = 0.

What do we use residuals for? Most importantly, residuals are useful for investigating poor model
fit. Residual plots highlight poor model fit.

Another use for residuals is to create covariate adjusted variables. Specifically, residuals can be
thought of as the outcome (Y) with the linear association of the predictor (X) removed. So, for
example, if you wanted to create a weight variable with the linear effect of height removed, you
would fit a linear regression with weight as the outcome and height as the predictor and take the
residuals. (Note this only works if the relationship is linear.)
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Finally, we should note the different sorts of variation one encounters in regression. There’s the
total variability in our response, usually called total variation. One then differentiates residual
variation (variation after removing the predictor) from systematic variation (variation explained
by the regression model). These two kinds of variation add up to the total variation, which we’ll see
later.

Example

Watch this video before beginning⁵⁹

The code below shows how to obtain the residuals.

> data(diamond)

> y <- diamond$price; x <- diamond$carat; n <- length(y)

> fit <- lm(y ~ x)

## The easiest way to get the residuals

> e <- resid(fit)

## Obtain the residuals manually, get the predicted Ys first

> yhat <- predict(fit)

## The residuals are y - yhat. Let's check by comparing this

## with R's build in resid function

> max(abs(e -(y - yhat)))

[1] 9.486e-13

## Let's do it again hard coding the calculation of Yhat

max(abs(e - (y - coef(fit)[1] - coef(fit)[2] * x)))

[1] 9.486e-13

Residuals versus X

A useful plot is the residuals versus the X values. This allows us to zoom in on instances of poor
model fit. Whenever we look at a residual plot, we are searching for systematic patterns of any sort.
Here’s the plot for diamond data.

⁵⁹https://www.youtube.com/watch?v=DSsSwKJ9frg&list=PLpl-gQkQivXjqHAJd2t-J_One_fYE55tC&index=14
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Plot of the mass (horizontal) versus residuals (vertical)

Let’s go through some more contrived examples to highlight Here’s a plot of nonlinear data where
we’ve fit a line.
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Plot of simulated non-linear data.

Here’s what happens when you focus in on the residuals.
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Plot of residuals versus X

Another common feature where our model fails is when the variance around the regression line
is not constant. Remember our errors are assumed to be Gaussian with a constant error. Here’s an
example where heteroskedasticity is not at all apparent in the scatterplot.

Scatterplot demonstrating heteroskedasticity.

Now look at the consequences of focusing in on the residuals.
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Residuals versus X.

If we look at the residual plot for the diamond data, things don’t look so bad.

Residuals versus X.

Estimating residual variation

Watch this before beginning⁶⁰

We’ve talked at length about how to estimate β0 and β1. However, there’s another parameter in our
model, σ. Recall that our model is Yi = β0 + β1Xi + ϵi, where ϵi ∼ N(0, σ2).

It seems natural to use our residual variation to estimate population error variation. In fact, the
maximum likelihood estimate of σ2 is 1

n

∑n
i=1 e

2
i , the average squared residual. Since the residuals

⁶⁰https://www.youtube.com/watch?v=ZE3a4OZFWPA&list=PLpl-gQkQivXjqHAJd2t-J_One_fYE55tC&index=15
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have a zero mean (if an intercept is included), this is close to the the calculating the variance of the
residuals. However, to obtain unbiasedness, most people use

σ̂2 =
1

n− 2

n∑
i=1

e2i .

The n− 2 instead of n is so that E[σ̂2] = σ2. This is exactly analogous to dividing by n− 1 in the
ordinary variance calculation. In fact, the ordinary variance (using var in R on a vector) is exactly
the same as the residual variance estimate from a model that has an intercept and no slope. The
n − 2 instead of n − 1 when we include a slope can be thought of as losing a degree of freedom
from having to estimate an extra parameter (the slope).

Most of this is typically opaque to the user, since we just grab the correct residual variance output
from lm. But, to solidify the concepts, let’s go through the diamond example to make sure that we
can hard code the estiamtes on our own. (And from then on we’ll just use lm.)

Diamond example

Finding residual variance estimates.

> y <- diamond$price; x <- diamond$carat; n <- length(y)

> fit <- lm(y ~ x)

## the estimate from lm

> summary(fit)$sigma

[1] 31.84

## directly calculating from the residuals

> sqrt(sum(resid(fit)^2) / (n - 2))

[1] 31.84

Summarizing variation

A way to think about regression is in the decomposition of variability of our response. The total
variability in our response is the variability around an intercept. This is also the variance estimate
from a model with only an intercept:

Total variability =
n∑

i=1

(Yi − Ȳ )2

The regression variability is the variability that is explained by adding the predictor. Mathematically,
this is:

Residuals 43

Regression variabilty =
∑n

i=1(Ŷi − Ȳ )2.

The residual variability is what’s leftover around the regression line

Residual variability =
n∑

i=1

(Yi − Ŷi)
2

It’s a nice fact that the error and regression variability add up to the total variability:

n∑
i=1

(Yi − Ȳ )2 =
n∑

i=1

(Yi − Ŷi)
2 +

n∑
i=1

(Ŷi − Ȳ )2

Thus, we can think of regression as explaining away variability. The fact that all of the quantities
are positive and that they add up this way allows us to define the proportion of the total variability
explained by the model.

Consider our diamond example again. The plot below shows the variation explained by a model
with an intercept only (representing total variation) and that when the mass is included as a linear
predictor. Notice how much the variation decreases when including the diamond mass.

Here’s the code:

e = c(resid(lm(price ~ 1, data = diamond)),

resid(lm(price ~ carat, data = diamond)))

fit = factor(c(rep("Itc", nrow(diamond)),

rep("Itc, slope", nrow(diamond))))

g = ggplot(data.frame(e = e, fit = fit), aes(y = e, x = fit, fill = fit))

g = g + geom_dotplot(binaxis = "y", size = 2, stackdir = "center", binwidth = 20)

g = g + xlab("Fitting approach")

g = g + ylab("Residual price")

g
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Residuals for intercept only and linear regression for the diamond example.

R squared

R squared is the percentage of the total variability that is explained by the linear relationship with
the predictor

R2 =

∑n
i=1(Ŷi − Ȳ )2∑n
i=1(Yi − Ȳ )2

Here are some summary notes about R squared.

• R2 is the percentage of variation explained by the regression model.
•

0 ≤ R2 ≤ 1

• R2 is the sample correlation squared
• R2 can be a misleading summary of model fit.

– Deleting data can inflate it.
– (For later.) Adding terms to a regression model always increases R2.

Anscombe’s residual (named after their inventor) are a famous example of our R squared doesn’t
tell the whole story about model fit. In this example, four data sets have equivalent R squared values
and beta values, but dramatically different model fits. The result is to suggest that reducing data to
a single number, be it R squared, a test statistic or a P-value, often masks important aspects of the
data. The code is quite simple: data(anscombe);example(anscombe).
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Plot of Anscombe’s data set.

Exercises

1. Fit a linear regression model to the father.son dataset with the father as the predictor and
the son as the outcome. Plot the son’s height (horizontal axis) versus the residuals (vertical
axis). Watch a video solution.⁶¹

2. Refer to question 1. Directly estimate the residual variance and compare this estimate to the
output of lm. Watch a video solution.⁶²

3. Refer to question 1. Give the R squared for this model. Watch a video solution.⁶³
4. Load the mtcars dataset. Fit a linear regression with miles per gallon as the outcome and

horsepower as the predictor. Plot horsepower versus the residuals. Watch a video solution.⁶⁴
5. Refer to question 4. Directly estimate the residual variance and compare this estimate to the

output of lm. Watch a video solution.⁶⁵
6. Refer to question 4. Give the R squared for this model. Watch a video solution.⁶⁶

⁶¹https://www.youtube.com/watch?v=WnFuqlS3vvc&index=26&list=PLpl-gQkQivXji7JK1OP1qS7zalwUBPrX0
⁶²https://www.youtube.com/watch?v=M5scUi6JTCI&index=27&list=PLpl-gQkQivXji7JK1OP1qS7zalwUBPrX0
⁶³https://www.youtube.com/watch?v=A3IqBqjbVjo&index=28&list=PLpl-gQkQivXji7JK1OP1qS7zalwUBPrX0
⁶⁴https://www.youtube.com/watch?v=g0YPXDpQ15s&list=PLpl-gQkQivXji7JK1OP1qS7zalwUBPrX0&index=29
⁶⁵https://www.youtube.com/watch?v=R_RPGz4UpO4&list=PLpl-gQkQivXji7JK1OP1qS7zalwUBPrX0&index=30
⁶⁶https://www.youtube.com/watch?v=eavifxTZgfQ&list=PLpl-gQkQivXji7JK1OP1qS7zalwUBPrX0&index=31

Regression inference
Watch this before beginning.⁶⁷

In this chapter, we’ll consider statistical inference for regression models.

Reminder of the model

Consider our regression model:

Yi = β0 + β1Xi + ϵi

where ϵ ∼ N(0, σ2). Let’s consider some ways for doing inference for our regression parameters.
For this development, we assume that the true model is known. We also assume that you’ve seen
confidence intervals and hypothesis tests before. If not, consider taking the Statistical Inference
course and book before approaching this material.

Remember our estimates:

β̂0 = Ȳ − β̂1X̄

and

β̂1 = Cor(Y,X)
Sd(Y )

Sd(X)
.

Review

Let’s review some important components of statistical inference. Consider statistics like the
following:

θ̂ − θ

σ̂θ̂

where θ̂ is an estimate of interest, θ is the estimand of interest and σ̂θ̂ is the standard error of θ̂. We
see that in many cases such statistics often have the following properties:

⁶⁷https://www.youtube.com/watch?v=vSdws014e4k&list=PLpl-gQkQivXjqHAJd2t-J_One_fYE55tC&index=16
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1. They are normally distributed and have a finite sample Student’s T distribution under
normality assumptions.

2. They can be used to test H0 : θ = θ0 versus Ha : θ >,<, ̸= θ0.
3. They can be used to create a confidence interval for θ via θ̂ ±Q1−α/2σ̂θ̂ where Q1−α/2 is the

relevant quantile from either a normal or T distribution.

In the case of regression with iid Gaussian sampling assumptions on the errors, our inferences will
follow very similarly to what you saw in your inference class.

We won’t cover asymptotics for regression analysis, but suffice it to say that under assumptions on
the ways in which theX values are collected, the iid sampling model, and mean model, the normal
results hold to create intervals and confidence intervals

Results for the regression parameters

First, we need standard errors for our regression parameters. These are given by:

σ2
β̂1

= V ar(β̂1) = σ2/
n∑

i=1

(Xi − X̄)2

and

σ2
β̂0

= V ar(β̂0) =

(
1

n
+

X̄2∑n
i=1(Xi − X̄)2

)
σ2

In practice, σ is replaced by its residual variance estimate covered in the last chapter.

Given how often this came up in inference, it’s probably not surprising that under iid Gaussian
errors

β̂j − βj

σ̂β̂j

follows a t distribution with n-2 degrees of freedom and a normal distribution for large n. This can
be used to create confidence intervals and perform hypothesis tests.

Example diamond data set

Watch this before beginning⁶⁸

Let’s go through a didactic example using our diamond pricing data. First, let’s define our outcome,
predictor and estimate all of the parameters. (Note, again we’re hard coding these results, but lm
will give it to us automatically).

⁶⁸https://www.youtube.com/watch?v=V4Y7MHbn3lw&list=PLpl-gQkQivXjqHAJd2t-J_One_fYE55tC&index=17
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library(UsingR); data(diamond)

y <- diamond$price; x <- diamond$carat; n <- length(y)

beta1 <- cor(y, x) * sd(y) / sd(x)

beta0 <- mean(y) - beta1 * mean(x)

e <- y - beta0 - beta1 * x

sigma <- sqrt(sum(e^2) / (n-2))

ssx <- sum((x - mean(x))^2)

Now let’s calculate the standard errors for our regression coefficients and the t statistic. The natural
null hypotheses are H0 : βj = 0. So our t statistics are just the estimates divided by their standard
errors.

seBeta0 <- (1 / n + mean(x) ^ 2 / ssx) ^ .5 * sigma

seBeta1 <- sigma / sqrt(ssx)

tBeta0 <- beta0 / seBeta0

tBeta1 <- beta1 / seBeta1

Now let’s consider getting P-values. Recall that P-values are the probability of getting a statistic as
or larger than was actually obtained, where the probability is calculated under the null hypothesis.
Below I also do some formatting to get it to look like the output from lm.

> pBeta0 <- 2 * pt(abs(tBeta0), df = n - 2, lower.tail = FALSE)

> pBeta1 <- 2 * pt(abs(tBeta1), df = n - 2, lower.tail = FALSE)

> coefTable <- rbind(c(beta0, seBeta0, tBeta0, pBeta0), c(beta1, seBeta1, tBeta1\

, pBeta1))

> colnames(coefTable) <- c("Estimate", "Std. Error", "t value", "P(>|t|)")

> rownames(coefTable) <- c("(Intercept)", "x")

> coefTable

Estimate Std. Error t value P(>|t|)

(Intercept) -259.6 17.32 -14.99 2.523e-19

x 3721.0 81.79 45.50 6.751e-40

So the first column are the actual estimates. The second is the standard errors, the third is the t value
(the first divided by the second) and the final is the t probability of getting an unsigned statistic that
large under the null hypothesis (the P-value for the two sided test). Of course, we don’t actually go
through this exercise every time; lm does it for us.
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> fit <- lm(y ~ x);

> summary(fit)$coefficients

Estimate Std. Error t value Pr(>|t|)

(Intercept) -259.6 17.32 -14.99 2.523e-19

x 3721.0 81.79 45.50 6.751e-40

Remember, we reject if our P-value is less than our desired type I error rate. In both cases the test is
for whether or not the parameter is zero. This is almost always of interest for the slope, but frequently
a zero intercept isn’t of interest so that P-value is often disregarded.

For the slope, a value of zero represents no linear relationship between the predictor and response.
So, the P-value is for performing a test of whether any (linear) relationship exist or not.

Getting a confidence interval

Recall from your inference class, a fair number of confidence intervals take the form of an estimate
plus or minus a t quantile times a standard error. Let’s use that formula to create confidence intervals
for our regression parameters. Let’s first do the intercept.

> sumCoef <- summary(fit)$coefficients

> sumCoef[1,1] + c(-1, 1) * qt(.975, df = fit$df) * sumCoef[1, 2]

[1] -294.5 -224.8

Now let’s do the slope:

> (sumCoef[2,1] + c(-1, 1) * qt(.975, df = fit$df) * sumCoef[2, 2]) / 10

[1] 355.6 388.6

So, wewould interpret this as: “with 95% confidence, we estimate that a 0.1 carat increase in diamond
size results in a 355.6 to 388.6 increase in price in (Singapore) dollars”.

Prediction of outcomes

Watch this before beginning⁶⁹

Finally, let’s consider prediction again. Consider the problem of predicting Y at a value of X. In our
example, this is predicting the price of a diamond given the carat.

We’ve already covered that the estimate for prediction at point x0 is:

⁶⁹https://www.youtube.com/watch?v=aMirqYW6VrY&index=18&list=PLpl-gQkQivXjqHAJd2t-J_One_fYE55tC
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β̂0 + β̂1x0

A standard error is needed to create a prediction interval. This is important, since predictions by
themselves don’t convey anything about how accurate we would expect the prediction to be. Take
our diamond example. Because the model fits so well, we would be surprised if we tried to sell a
diamond and the offers were well off our model prediction (since it seems to fit quite well).

There’s a subtle, but important, distinction between intervals for the regression line at point x0 and
the prediction of what a y would be at point x0. What differs is the standard error:

For the line at x0 the standard error is,

σ̂

√
1

n
+

(x0 − X̄)2∑n
i=1(Xi − X̄)2

For the prediction interval at x0 the standard error is

σ̂

√
1 +

1

n
+

(x0 − X̄)2∑n
i=1(Xi − X̄)2

Notice that the prediction interval standard error is a little large than error for a line. Think of it this
way. If we want to predict a Y value at a particular X value, and we knew the actual true slope and
intercept, there would still be error. However, if we only wanted to predict the value at the line at
that X value, there would be no variance, since we already know the line.

Thus, the variation for the line only considers how hard it is to estimate the regression line at that
X value. The prediction interval includes that variation, as well as the extra variation unexplained
by the relationship between Y and X. So, it has to be a little wider.

For the diamond example, here’s both the mean value and prediction interval. (code and plot).
Notice that to get the various intervals, one has to use one of the options interval="confidence"
or interval="prediction" in the prediction function.

library(ggplot2)

newx = data.frame(x = seq(min(x), max(x), length = 100))

p1 = data.frame(predict(fit, newdata= newx,interval = ("confidence")))

p2 = data.frame(predict(fit, newdata = newx,interval = ("prediction")))

p1$interval = "confidence"

p2$interval = "prediction"

p1$x = newx$x

p2$x = newx$x

dat = rbind(p1, p2)

names(dat)[1] = "y"
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g = ggplot(dat, aes(x = x, y = y))

g = g + geom_ribbon(aes(ymin = lwr, ymax = upr, fill = interval), alpha = 0.2)

g = g + geom_line()

g = g + geom_point(data = data.frame(x = x, y=y), aes(x = x, y = y), size = 4)

g

Image of prediction and mean value interval.

Summary notes

• Both intervals have varying widths.
– Least width at the mean of the Xs.

• We are quite confident in the regression line, so that interval is very narrow.
– If we knew β0 and β1 this interval would have zero width.

• The prediction interval must incorporate the variability in the data around the line.
– Even if we knew β0 and β1 this interval would still have width. *
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Exercises

1. Test whether the slope coefficient for the father.son data is different from zero (father as
predictor, son as outcome). Watch a video solution.⁷⁰

2. Refer to question 1. Form a confidence interval for the slope coefficient. Watch a video
solution⁷¹

3. Refer to question 1. Form a confidence interval for the intercept (center the fathers’ heights
first to get an intercept that is easier to interpret). Watch a video solution.⁷²

4. Refer to question 1. Form a mean value interval for the expected son’s height at the average
father’s height. Watch a video solution.⁷³

5. Refer to question 1. Form a prediction interval for the son’s height at the average father’s
height. Watch a video solution.⁷⁴

6. Load the mtcars dataset. Fit a linear regression with miles per gallon as the outcome
and horsepower as the predictor. Test whether or not the horsepower power coefficient is
statistically different from zero. Interpret your test.

7. Refer to question 6. Form a confidence interval for the slope coefficient.
8. Refer to quesiton 6. Form a confidence interval for the intercept (center the HP variable first).
9. Refer to question 6. Form a mean value interval for the expected MPG for the average HP.
10. Refer to question 6. Form a prediction interval for the expected MPG for the average HP.
11. Refer to question 6. Create a plot that has the fitted regression line plus curves at the expected

value and prediction intervals.

⁷⁰https://www.youtube.com/watch?v=6hkBsUAQU7E&list=PLpl-gQkQivXji7JK1OP1qS7zalwUBPrX0&index=32
⁷¹https://www.youtube.com/watch?v=eExHWvQImEE&list=PLpl-gQkQivXji7JK1OP1qS7zalwUBPrX0&index=33
⁷²https://www.youtube.com/watch?v=GeDmfhm2bhc&index=34&list=PLpl-gQkQivXji7JK1OP1qS7zalwUBPrX0
⁷³https://www.youtube.com/watch?v=dLV_Jopsbl4&list=PLpl-gQkQivXji7JK1OP1qS7zalwUBPrX0&index=35
⁷⁴https://www.youtube.com/watch?v=-rx-71QsUnY&list=PLpl-gQkQivXji7JK1OP1qS7zalwUBPrX0&index=36


